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Abstract. The diocotron spectrum for a simplified model of Malmberg-Penning traps that includes
compression effects due to end curvature is investigated herein. Performing an initial value treat-
ment, we find that there is a class of length profiles for which the linearized eigenvalue equation
of the model can be integrated in quadratures (integrable case). In this case, there is only algebraic
growth when the effective angular frequency has a maximum (hollow profile) or a minimum, and
the model is mathematically equivalent to the zero curvature (2D Euler) case. Furthermore, we study
profiles that are slightly different from the integrable one (the difference being characterized by a

small parametek), finding that the frequency of the unstable 1 mode scales &%/3. Analytical
calculations and numerical simulations are found in remarkable agreement.

INTRODUCTION

The analogy between the 2D Euler equations for an incompressible and inviscid fluid
and the classical equations for the evolution of a non-neutral plasma (2D drift-Poisson
model) in a Penning trap is well known [1]. According to the linear theory, the 2D drift-
Poisson model has demonstrated to be satisfactory only for (exponentially unstable)
perturbations with azimuthal mode numbes 1. On the other hand, it can be proved
theoretically that perturbations with mode numbet 1 are always stable, regardless

of the initial equilibrium density profile [1]. Experiments, however, show that the linear
growth of thel = 1 mode is exponential [2].

New fluid-dynamics models have been developed for a non-neutral plasma, trying to
solve the problem of thé = 1 diocotron instability [3, 4]. These works show that a
possible explanation of the instability comes from the finite curvature of the ends of the
plasma column due to the confining voltage (i.e. compression effects).

The present study investigates the modification of the low-frequency branch of the
diocotron spectrum when these compression and finite electron temperature effects are
taken into account.



PHYSICAL MODEL

We focus our attention on a simplified version of the model developed by some of the
authors in Ref. [4]. In normalized units, the model is the following:
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For a detailed derivation of this model we refer to Refs. [4, 5, 6]. Compression effects
are retained in the terms depending on the normalized tempexat(@esumed to be
uniform) and on the normalized effective plasma lenbgfr). The relation between
physical and dimensionless quantities can be found in Ref. [5]. The effective plasma
length is assumed fixed in time and this makes the model 2D.

The motivation of this study is that this approximated model is still able to capture
the features of the= 1 diocotron instability (as shown in Ref. [4]) but, since it is 2D,
it is possible to perform analytical calculations to match numerical simulations. Our
goal is to get some insights on the effects of both temperature and length profile on the
diocotron spectrum that will help us in the study of the complete model of Ref. [4].

ALGEBRAIC INSTABILITY ININTEGRABLE CASE

First, we perform an analysis similar to the one by Smith and Rosenbluth [7]. Applying
the Laplace transformation to the linearized time-evolution equation that can be deduced
from model (1), one obtains:
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where the prime means derivative with respectandd@, andda(r,0) are respectively
the Laplace transformed perturbation of the potential and the initial perturbation of the
line integrated charge density. A new effective angular frequency has been defined
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wherewe (r) = @, (r) /r is theE x B equilibrium angular frequency in the central plane
of the trap. In the limit ol_g =const, Eq. (2) reduces to the classical Euler case.

After some algebra, it can be shown that under a certain condition Eq. (2) can be
integrated in quadratures, i.8@,(r) = r[w—Q(r)] is a solution of the problem for
| = 1. We refer to this case as the integrable case. The condition is that the following
equation be satisfied:
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FIGURE 1. Effective length profiles.
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wherex = L{/Lo. In this case, provided that the effective angular frequency has a
stationary point, the system is algebraically unstable and the mode perturbation grows
asymptotically proportionally ta/t (as for the classical 2D Euler case [7]). This result
has been confirmed numerically.

Given the equilibrium initial parameters, Eq. (4) can be used to obtain the integrable
length profile and in general this profile will be different from the one that comes from
the equilibrium solution for a given configuration of the Penning trap. In order to make
these two profiles as close as possible inside the plasma radius (which is the most
important region, as pointed out in Ref. [3]) we use the boundary condixig@s= 0
andX’' (0) = Lgeq(0) /Loeq(0). Note however that one could in principle choose the
geometry of the trap (which determines the equilibrium profile) to match the integrable
length profileLg jnteg(r).

Figure 1 shows the length profiles. The equilibrum length profile is calculated for
the same geometrical and physical parameters of Ref. [4], with the choice of confining
voltageV = 50 V and temperatur® = 7.5 V. Accordingly, we choose the normalized
temperature = 0.42 and the normalized equilibrum density profile [3, 4]:
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with ng(0) = 6.2, u= 3 andr, = 0.59.




INITIAL VALUE TREATMENT

In Eq. (2), the Laplace transformation of the perturbation of the potential is defined
asd@,(r) = [y °€“dq@[r,t)dt, while the inverse Laplace transformation is given by

dq(r,t) = f*f;'r? Qo(r)e 192 wheren is a large enough real positive number, such
that all irregular points of the functiobq,, are located below the line lm=n in the
complex plane ofv.

We introduce the functiof(r, w) = rd@,(r) and solve the second order equation for
Y induced by Eqg. (2). Unlikéq,, the solutions forp are bounded at— 0, which is
necessary for Eq. (6) below.

We perform our analysis in the vicinity of the stationary paigtws = Q(rs)), by
using the method of matched asymptotic expansionapforw). For simplicity, the
initial perturbation is chosen to be localizéd(r,0) = 0;8(r —r;), as it is done in Ref.
[8]. This method gives the following result
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Here the contou€ goes around the vertical branch cut attached to the poiatws in
the complex plane ofo. Y, (r, ) and Ys(r,w) are two linear independent solutions of
the homogeneous part of the Laplace transformed equation suap,tha®((r —rs)?)
andWs ~ O(1/(r —rg)) in the vicinity of rs. We have also introducefl = w— ws and
Q" d?Q
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Two merging singular points are present wheapproachess and the contour of
integration in the complex plane oshould always go between these two points [9].

We expand in power di the integrand of Eg. (6) and perform the integral. Each term

. . dw
of the expansion contributes ?éA" g it o Ot~V~le~'®! The algebraic instability

(v < —1) is only possible if the term proportional #~%/2 in the denominator of

expression (6) vanishes, i.e.|f;(0,w) = 0 or Y, (Ry,w) = 0. In the integrable case

Wr =r?(Q(r) — ws) and, thereforay (0,w) = 0. Thus, in the integrable case, the leading

term of the expansion has= —3/2 (from the numerator of Eq. (6)) and the calculation

of the contour integral leads to growih/t. Exact calculations of the contour integral

(6) recover the asymptotic formula obtained by the stationary phase method in Ref. [7].
When the length profile deviates only a little from the integrable profile (we refer

to this case as non-integrable cadey,= (1 — €)Lojnteg+ ELoeq Wheree is a small

parameter, the perturbation to the solutions of Eq. (2)areln particular,dyy, (£ and

Wr (0, ) CE . Sincey, (0, w) # 0, algebraic growth does not occur in the non-integrable
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FIGURE 2. Frequency shift of the unstallle= 1 mode, log-log scale.

case (continuum modes near the endpairt ws phase mix according to /2 in this
case). The zeroes of the denominator in Eq. (6) determine the discrete eigenfrequencies.
One can see that for smalithe eigenfrequencies exist with(x 2/3 (as predicted by
Smith in Ref. [10] for an ad-hoc model and seen in Ref. [3]). These eigenfrequencies are
located close to the edge of the continuwg

Numerical simulations have been done to compare with analytical predictions. Specif-
ically, Fig. 2 shows the frequency shift of the real frequenoy) (©f the unstablé = 1
mode with respect to the edge of the continuumgfbetween 0 and 1. We perform the
best fit with the least squares method only for the points marked with triangles, since for
very smalle there is a loss of accuracy and for laigthe perturbation theory fails. We
find ws— oy & %79, in good agreement with the resul — wy (& /3 obtained from Eq.
(6).

Figure 3 shows the growth ratg) (of the unstabld = 1 mode as a function d.
Remarkably, we fing (£ %65, in excellent agreement with(t 2/3. One can also notice
that the integrable case is a very specific case and as soon as one moves a little bit from
this profile, an exponential growth is found.

Figure 4 shows the diocotron spectrum fot 1, corresponding thg = Loeq The
upper edge of the continuum splits in two complex conjugate discrete modes (with real
part of the frequency that decreases @screases from 0 to 1). It is seen in Fig. 4 that
another discrete mode appears at the lower edge of the continuum (in the integrable
case this mode is the stable diocotron mode). As predicted analytically and confirmed
numerically, its real frequency shift (with respect to the lower edge of the continuum)
scales proportionally te.
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FIGURE 3. Growth rate of the unstable= 1 mode, log-log scale.
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FIGURE 4. Spectrum.
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